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Abstract. It is shown that the optics–mechanics analogy which originally led Schrödinger to his
famous equation stops at the time-independent level. For potentials involving time explicitly, the
time-dependent Schrödinger equation cannot be deduced in a similar manner. Instead, a variational
principle for the time-dependent Schrödinger equation is established. It minimizes the total quantum
fluctuations of a newly defined Hamilton–Jacobi function about its limiting classical value over
space–time, thereby demonstrating the existence of a deeper relationship between classical and
quantum mechanics beyond the simple optics–mechanics analogy. This principle is similar in
spirit to Feynman’s space–time approach to quantum mechanics.

It is often useful to express the same physics in different mathematical forms such as a
differential equation, or a variational principle, etc, since each may provide a different way of
thinking about the physics, or of embarking on a new discovery. The Feynman path-integral
formulation of quantum mechanics is a familiar example. In what follows we shall derive
a variational principle for the time-dependent Schrödinger equation (TDSE) which seems
to show a more intimate connection between classical mechanics and wave mechanics than
hitherto anticipated. It should provide another way of thinking about processes in space–time
quantum mechanically.

It is well known that in the original derivation of the time-independent Schrödinger
equation (TISE), Schrödinger first wanted merely to find a suitable partial differential equation
for the hydrogen atom whose solutions were required to be everywhere real, single-valued,
finite and twice differentiable. He commenced with the time-independent Hamilton–Jacobi
equation (TIHJE)

(∇S)2 − 2m
(
E − V (x)) = 0. (1)

An equation of the desired type could not be obtained directly from (1). So, he replaced
S byK logψ , thus transforming (1) into

(∇ψ)2 − 2m

K2
(E − V (x))ψ2 = 0 (2)

whereK is treated as a constant.
A differential equation of the required form could now be derived by assuming that the

variation of the integral of the left-hand side of (2), taken over all space, should vanish [1, 2].
On applying the Euler–Lagrange conditions, Schrödinger arrived at his TISE:

Hψ − Eψ = 0 or
K2

2m
∇2ψ + (E − V (x))ψ = 0 (3)
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provided he tookK to beh̄ in order to yield the Balmer series [3]. Note, however, that since the
functionS of the classical HJ equation is real, the correspondingψ must also be understood as
real, renderingψ less general than it should be. Furthermore, the transformation ofS toψ is
purely mathematical and the substitution of (2) by the variational principle is just to produce a
formally suitable differential equation which, by itself, did not seem to have any justification.
It was in his second communication on wave mechanics [4] that he supplied the justification
by introducing the optics–mechanics analogy.

This analogy was based on an ingenious observation of the parallel between the geometric
or ‘ray’ limit of optics, equation (4), and the Hamilton–Jacobi (HJ) form of classical dynamics,
equation (5):

(∇L)2 = n2(x) (4)

(∇W)2 = 2m(E − V (x)). (5)

In (4), the eikonalL(x) is the spatial part of the phase associated with the electromagnetic
potential wave,φ(x, t):

φ(x, t) = φ(x) exp(−i2πνt)

= A(x) exp

(
i2π

(
L(x)

λ0
− νt

))
(6)

where bothA(x) andL(x) are real. The spatial partφ(x) = A(x) exp(i2πL(x)) generally
obeys the Helmholtz equation

∇2φ(x)− k2
0n

2(x)φ(x) = 0 (7)

whose ray limit is just (4). On the other hand, the characteristic functionW(x) in (5) is the
spatial portion of the principal functionS(x, t) of particle mechanics of (1):

S(x, t) = W(x)− Et. (8)

Comparisons between equations (4) and (5) and between the total phases in the EM wave of (6)
and in the advancing particle wavefront with constantS according to (8) enabled Schrödinger
to make the mechanics–optics analogy that

W(x)− Et = hL(x)

λ0
− hνt (9)

or separately,

W(x) = hL(x)

λ0
(9a)

and

E = hν (9b)

where the same constant of proportionalityh is inserted in both equations. This constant is
identified as being the Planck constant.

For Schr̈odinger, identifying the left-hand side of (9) as the phase of the particle wavefront
in its corresponding ray limit furnished the important first step. Recognizing that the classical
particle trajectories are merely rays normal to such wavefronts, he now went beyond the ray
limit by attaching a crucial time-independent amplitude to that phase factor, thereby rounding
it up to a complete wavefunction:

ψ(x, t) = A(x) exp

(
i
W(x)− Et

h̄

)
= ψ(x) exp

(
−i
Et

h̄

)
(10)
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On the basis of the optics–mechanics analogy embodied in equations (4), (5) and (9a), (9b),
it was then natural to assert [4] that the spatial partψ(x), just likeφ(x) of (7), should indeed
be governed by another Helmholtz-type equation, i.e. the TISE (3). The role of the spatially
varying refractive indexn(x) in ray optics of (4) is seen to be played by the square root of the
local kinetic energy,

√
E − V (x), in the HJ mechanics of (5).

We now switch our focus to the time-dependent Schrödinger equation (TDSE), the subject
of the present investigation.

Schr̈odinger himself generalized his wave equation to a time-dependent one by simply
differentiating the time-dependent factor exp(−i Et

h̄
) of (10) which, together with (3), are then

turned into

Hψ(x, t) =
(
− h̄

2

2m
∇2 + V (x)

)
ψ(x, t)

= ih̄
∂ψ(x, t)

∂t
. (11)

It was in this somewhat cavalier manner that the TDSE was originally derived. It is obvious
that this procedure works when the system possesses a definite energy. It can easily be shown
that it is still valid for a wave packet comprised of states of several different energies, as long as
the potentialV does not depend on time explicitly, as has been assumed from (1) and up to this
point. This procedure breaks down completely, however, when the potential depends explictly
on time. There is noa priori reason to expect equation (11) to be valid whenV = V (x, t).
Aside from claiming agreement with experiment, we want to look for a more natural way of
arriving at the TDSE, imagining ourselves to be back in the days of Schrödinger again.

One possible way is to return again to the variational principle which led Schrödinger to
his TISE (3) in the first place.

We first observe that the optics–mechanics analogy has its limits. When an optical medium
is characterized by a refractive index not only varying in space but also in time, the wave
equation becomes(

∇2 − n
2(x, t)

c2

∂2

∂t2

)
φ(x, t) = 0. (12)

A substitution ofφ(x, t) = φ(x) exp(−iωt) would no longer work; it will not produce a
time-independent part of the wave equation such as equation (7), since no definite frequencyω

could adequately describe the time evolution. We are thus left with a rather inflexible
second-order differential equation, quite unlike the first-order, time-dependent Hamilton–
Jacobi equation (TDHJE):

(∇S)2 + 2m

(
V (x, t) +

∂S

∂t

)
= 0. (13)

Unlike the close resemblance between equations (4) and (5), no easy anology between
equations (12) and (13) can be drawn to establish a wave version of the HJ mechanics such
as (10) in the presence of time-dependent potentials. We seem to have reached the end of the
road as far as the analogy goes.

Citing the success of the optics–mechanics analogy in deriving the TISE (3) as the
justification for the use of the time-independent variational principle, we now boldly adapt
this principle to time-dependent situations.

Naturally, we proceed with (13) rather than (1). Recognizing that the functionS(x, t) is
proportional to the phase of the advancing wavefronts with constantS, as was clear from its
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previous time-independent version, equation (8), we construct our fully-fledged wavefunction
ψ(x, t) as

ψ(x, t) = A(x, t)exp

(
i
S(x, t)

h̄

)
(14)

whereA(x, t) is a real amplitude dependent on bothx andt . Thusψ is a genuine complex
function, distinct from its complex conjugate,ψ∗. We now define a new function ofψ andψ∗,
called the HJ function, by

F(ψ,ψ∗; t) ≡ h̄2

2m

∂ψ

∂x

∂ψ∗

∂x
+ V (x, t)ψψ∗ +

h̄

2i

(
ψ∗
∂ψ

∂t
− ψ ∂ψ

∗

∂t

)
. (15a)

The classical HJ mechanics, equation (13), is described in terms ofψ andψ∗ by

F(ψ,ψ∗; t) = 0 (15b)

because the amplitudeA(x, t) becomes simply a constant in the classical limit, as it was
similarly for equation (2).

If ψ(x, t) satisfies the above equation, a differentψ , say, with a fully space- and time-
dependentA(x, t), would generally not satisfy this equation. We now postulate a variational
principle, not for the classicalψ(x, t) that satisfies (15b), but for the true wavefunction which
only approaches the classicalψ(x, t) in the limit of slow variation for the amplitudeA(x, t).
This principle is akin to the one originally adopted by Schrödinger for the time-independent
ψ , which we now call the principle of minimal quantum fluctuations:

0= δ
∫
F(ψ,ψ∗; t) dx dt

= δ
∫ {

h̄2

2m

∂ψ

∂x

∂ψ∗

∂x
+ V (x, t)ψψ∗ +

h̄

2i

(
ψ∗
∂ψ

∂t
− ψ ∂ψ

∗

∂t

)}
dx dt. (16)

While the integrand in (16) is just (15a), the integration is not only over all space but also
over time. Since the amplitude is allowed full variation,ψ andψ∗ can be varied independently.
Upon integrating by parts with no variations allowed at the distant space–time boundary,
equation (16) immediately leads to the correct TDSE

− h̄
2

2m

∂2ψ

∂x2
+ V (x, t)ψ +

h̄

i

∂ψ

∂t
= 0 (17)

and its complex-conjugate counterpart. SinceFclass(ψ,ψ
∗; t) ≡ F(ψcl, ψ

∗
cl; t) = 0, the

deviation of the HJ functionF(ψ,ψ∗; t) from its classical counterpartFclass(ψ,ψ
∗; t) is

1F ≡ F(ψ,ψ∗; t)− Fclass(ψ,ψ
∗; t) = F(ψ,ψ∗; t). (18)

This means that the fluctuation1F is totally quantum mechanical in nature. Our variational
principle (16) states that the total fluctuations ofF aboutFclass over the entire space–time
domain is a minimum with respect to the changes ofψ andψ∗:∫

1F(ψ,ψ∗; t) dx dt = minimum. (19)

Note that it is the first-order nature of the TDHJE (13) or (15b) which gives rise eventually
to the first-order TDSE (17). In contrast, the optics–mechanics analogy stops at the time-
independent level. The first-order TDSE can never be drawn from any parallel between the
TDHJE (15b) and the second-order wave equation (12) in optics. Without guidance from any
analogy there is noa priori reason why the TDHJE should lead us to the realm of quantum
mechanics. Our success by starting from the TDHJE (13) or (15b) seems to say that the classical
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HJ equation, in both its time-independent and time-dependent forms, is more fundamentally
related to wave mechanics in its own right than the relationship implied by the simple optics–
mechanics analogy as first conceived by Schrödinger. So, even without the anology, classical
mechanics and wave mechanics are intimately and deeply related in that the total fluctuations
over space–time ofF(ψ,ψ∗; t) about its classical limit must be minimized to obtain the correct
wavefunctionψ(x, t).

In the special case ofV = V (x), the time-dependent equations (17) and (16) reduce
immediately, of course, to the TISE and the corresponding static variational principle,
respectively. Finally, we remark that the time-dependent variational approach (19) is similar
in spirit to the space–time approach of Feynman to quantum mechanics [5], in that all the
different space–time paths from an initial stateψ(x, ti)

(= √δ(x − xi) at t = ti in the case of
the Feynman propagatorK(x, t; xi, ti)

)
to the final destinationx, t must all be sampled, and

their contributions compared, before the true final-state wavefunctionψ(x, t) (or the Feynman
amplitudeK(x, t; xi, ti)) can be determined in both approaches.

In conclusion, we note that while the mathematical step of changing from the static
variational principle to the present time-dependent one might seem trivial once it has been
pointed out, the implication of the deeper connection between classical and quantum mechanics
should be significant, in addition to providing a fresh way of thinking about quantum processes
in space–time.
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